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OVERVIEW:

▪ Timeline:
– Start Jan 2019

– End Mar 2020

– 100% complete

▪ Budget:
– Funding for FY19: $75K (100% DOE)

– Funding for FY20: $0

Time Use and Value in Mobility Services: Seeking Insights from 
Carsharing & Ridehailing Mode Choices for Value of Travel Time in AVs
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▪ Barriers: 
– Determining the value and productivity 

derived from new mobility technologies

– Difficulty in sourcing empirical real-world 

data applicable to new mobility technologies 

such as connectivity and automation

– Complex role of the human decision-making 

process in mobility systems

▪ Partners: 
– University of Washington (D. MacKenzie) 

collaboration, subcontract

– Migo (mobility service aggregator), data

– Argonne National Laboratory (J. Auld), 

interactions



RELEVANCE: TRAVEL TIME VALUE IS 
CRITICAL FOR ASSESSING BEHAVIOR 
AND BENEFITS OF NEW MOBILITY TECHS

▪ The monetary value (cost) of time spent traveling (“Value of Travel Time” or 

VoTT) is a major determinant of travel behavior, single largest travel cost
– Affects extent of travel (trip frequency and distance) and mode choice

– VoTT estimates/ savings are the principal component of cost-benefit analysis of 

transportation infrastructure investments [U.S. DOT 2016]

▪ Impact of automation on VoTT is highly uncertain
– Known to be one of the most important single parameters of in assessing benefits, 

demand response, and impacts of new mobility technologies

– Essential input for goal of “accurately modeling and simulating large-scale 

transportation systems”

▪ Paucity of real-world data on time-value in automated vehicles requires either
– Stated-preference surveys

– Inference from analog trips in proxy travel modes

Central to modeling vehicle automation and ride hailing/pooling
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RELEVANCE: ESTIMATE AV TIME VALUE 
FROM UNIQUE, REAL WORLD, DATA

▪ Riding in a ridehailing service or an AV, vs driving, is expected to reduce mental 

burden and ultimately allow travelers freedom to engage in other activities

– may result in decreased disutility/cost of time spent traveling

▪ Prior “stated preference/choice” methods are based on survey responses to 

hypothetical trip choices

– limitations to this approach are well established, partic. for novel choices

▪ Prior studies based on actual proxy trips consider modes dissimilar to AVs (trains 

or transit), or not definitively paired to a driving alternative (taxi/TNC)

▪ This study: Based on actual car trip choices develops quantitative estimates of 

how the value of travel time (VoTT) may change when time spent driving is 

replaced by time spent riding in a car.

Dataset uniquely observes paired-choice between car driving & riding
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APPROACH

▪ Revealed preference analysis 

of actual mode choices using a 

novel dataset from a mobility-

as-a-service aggregator App. 

▪ As in Gao et al. (2018), we treat 

the in-vehicle experience in a 

ridehailing vehicle today as a 

proxy for riding in a future fully 

automated vehicle

▪ Our team worked with Migo

staff to clean the data. 

Analyze actual data on travelers’ choices between simultaneous 
carsharing (driving) and ridehailing options, considering cost & time
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Data for this project provided by Migo, a 

Seattle-based mobility-as-a-service (MaaS) 

aggregator



APPROACH – USE DATA FROM APP USERS
ON TRIP ALTERNATIVES AND THEIR CHOICES
Variables: 

▪ Traveler ID (anonymized)

▪ Traveler location, trip origin & destination 

(blurred to within 100 meters)

▪ Actual trip OD distance

▪ Walking time, in-vehicle time and price for 

car-share Car2go

▪ Waiting time, in-vehicle time, and price for 

TNCs Uber and Lyft

▪ Whether traveler tapped to see more details 

▪ Whether traveler booked Uber, Lyft, or 

car2go in the Migo app, or linked out to the 

booking page
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Data range:

▪ July 2018 to February 2019 

▪ 168 travelers and 2082 sessions

▪ After filtering (incomplete cases, those without 

bookings or linkouts, unreasonable 

times/prices): 103 travelers and 863 sessions

The geographical distribution of the travelers in the Migo

dataset before data cleaning



APPROACH – DATA SUMMARY

Data: Chosen modes by number of observations and number of unique users

Chosen Mode Number of Observations Number of Users

Car2go 98 52

Uber 457 60

Lyft 308 51
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Data: Summary statistics of variables 

Variable Minimum 1st quantile Median Mean 3rd quantile Maximum

Car2go walk time (min) 1 3 5 6.88 9 32

Uber wait time (min) 1 2 3 3.15 4 14

Lyft wait time (min) 1 1 2 2.33 3 15

IVTT 1.53 8.89 11.78 13.31 16.19 123.27



ACCOMPLISHMENTS – DEVELOPED 
SUITABLE ESTIMATION MODELS

1. Account for In-Vehicle Travel Time (IVTT) and trip cost

2. Account for differences between walking and waiting times across alternatives

3. Because data do not show different In-vehicle travel times across alternatives 

for the same trip, treat IVTT as situation-specific (trip-specific) attribute, rather 

than an alternative-specific attribute. 

4. Account for other alternative-specific (Car2go vs TNC) effects in ASC term.

Vcar2go = 𝛽1* Pricecar2go + 𝛽2 * WalkTimecar2go

Vuber = ASCuber + 𝛽1* Priceuber + 𝛽3* IVTTuber + 𝛽5 * WaitTimeuber

Vlyft = ASClyft + 𝛽1* Pricelyft + 𝛽3 * IVTTlyft + 𝛽5 * WaitTimelyft

Use modern discrete-choice models (Multinomial Logit & Mixed Logit 
with Error Components)
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RESULTS FROM ESTIMATION: MIXED LOGIT 
WITH ERROR COMPONENTS
Parameters Value Standard error t-test p-value

Alternative specific constants

Car2go (base) - - - -

Uber 0.84 1.28 0.66 0.51

Lyft 0.61 1.25 0.49 0.63

Cost -0.32** 0.09 -3.56 0.00

In-vehicle travel time

Car2go (base) - - - -

Uber/Lyft 0.12** 0.06 1.99 0.05

Wait time (Uber/Lyft) 0.06 0.08 -0.78 0.44

Walk time (Car2go) -0.41** 0.15 -2.71 0.01

Error component (accounts for variability in non-time aspects of ridehailing vs. Car2go)

Ridehailing -6.69 2.37 -2.82 0.00

Initial log likelihood: -1065.758 Akaike Info. Criterion: 1307.240         

Final log likelihood: -646.620 Bayesian Info. Criterion: 1340.563 Rho-square:  0.387
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ACCOMPLISHMENTS: VOTT RESULTS 
FROM TWO ESTIMATION METHODS

▪ The positive coefficient of In-Vehicle Travel Time represents the greater utility 

(lower travel time cost) of ridehailing modes (riding) relative to car2go (driving). 

▪ Can estimate VoTT change with estimated coefficients for travel time and cost

∆ VoTT =
𝛽𝑡𝑖𝑚𝑒

𝛽𝑐𝑜𝑠𝑡
*60 = $/ℎ𝑟

▪ Based on Multinomial Logit model (simpler/more restrictive):

∆VoTT =
0.035

−0.134
∗ 60 = ~ − 16 $/ℎ𝑟

▪ Based on Mixed Logit (the least restrictive in terms of structuring the choice):

∆VoTT =
0.12

−0.32
∗ 60 = ~ − 23 $/ℎ𝑟

Both suggest a $16-$23/hr reduction in travel time cost from not driving
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ACCOMPLISHMENTS - DISCUSSION

▪ Results here indicate that the reduction in VoTT for using ridehailing services vs. 

carsharing (riding vs. driving) is about $23/for Migo users in the US

▪ This number may seem high, considering prior literature studying similar concepts 

and reporting a range of 13-40% VoTT reduction

– Those are relative to driving a personally owned vehicle

– And principally from stated-preference studies

▪ Furthermore, unique data in this study applies to its sample of users, who are 

likely higher-income
– VoTT is known related to opportunity cost of time and wage (as well as being trip and 

situation-dependent)

– Migo users examined are from cities with higher-than-average median

– NHTS also shows nationally car-share and ride-hail users are above-average income

• 50% of all carsharing/ridehailing users income exceeds $100k (vs U.S. median $61k) 

Comparison with other results and Context
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COLLABORATIONS AND 
COORDINATIONS

▪ University of Washington

– Parastoo Jabbari (PhD candidate)

– Andisheh Ranjbari (Research Engineer)

– Borna Arabkhedri (MS student)

– Don MacKenzie (Assoc. Prof., PI for subcontract)

▪ Oak Ridge National Laboratory

– Paul Leiby (PI)

▪ MIGO - kindly shared data

▪ Argonne National Laboratory (J. Auld) coordination
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PROPOSED FUTURE WORK

▪ Strengthen and extend estimates:

– Follow up with expanded data set, given further collaboration from Migo, 

others

– Seek some controls/proxies for rider characteristics like income

– Obtain data better-differentiating travel time for alternatives on same trip, and 

refining time estimate.
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•Any proposed future work is subject to 

change based on funding levels. 



SUMMARY – NEW ESTIMATES WITH REAL-WORLD CAR 
TRIP CHOICE DATA SUGGEST LARGE TIME COST 
SAVINGS FROM RIDING VS DRIVING IN THESE SETTINGS

▪ Unique behavioral dataset allows estimation of VoTT by “revealed preference”
– Directly addresses relative change in VoTT for same trip, riding vs. driving

▪ Estimated mean travel time cost reductions $16- $20/hr, for frequent urban users
– Suggests large benefits for full AVs & ridehail, and possible strong VMT response

▪ Result robust to two alternative estimation methodologies
– Control for walking and waiting time, and for non-time aspects of alternatives

▪ SOME CAVEATS
– Limited size of dataset, other limitations of data

• Trips are urban, short-to-medium distance, and for a higher-income sample

– Unclear if Car-share driving more or less convenient than conventional private car
• (if less, our estimated VoTT reductions from not driving would be on high side)

– VoTT is known to vary significantly with trip purpose, urgency, and driver income

Informative result, relevant for VoTT in AVs, but still partial answer 
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